428 research outputs found

    X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts

    Get PDF
    The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer–Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of ‘multimodal’ tomography, i.e. simultaneous XRF–CT, XANES–CT and XRD–CT. Subsequently, we show high-energy XRD–CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed

    Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach

    Full text link
    [EN] In this article, a numerical methodology for assessing combustion noise in compression ignition engines is described with the specific purpose of analysing the unsteady pressure field inside the combustion chamber. The numerical results show consistent agreement with experimental measurements in both the time and frequency domains. Nonetheless, an exhaustive analysis of the calculation convergence is needed to guarantee an independent solution. These results contribute to the understanding of in-cylinder unsteady processes, especially of those related to combustion chamber resonances, and their effects on the radiated noise levels. The method was applied to different combustion system configurations by modifying the spray angle of the injector, evidencing that controlling the ignition location through this design parameter, it is possible to decrease the combustion noise by minimizing the resonance contribution. Important efficiency losses were, however, observed due to the injector/bowl matching worsening which compromises the performance and emissions levels.The authors want to express their gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD calculations using CONVERGE software.Torregrosa, AJ.; Broatch, A.; Margot, X.; GĂłmez-Soriano, J. (2018). Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach. International Journal of Engine Research. 1-13. https://doi.org/10.1177/1468087418803030S113Benajes, J., Novella, R., De Lima, D., & TribottĂ©, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867Costa, M., Bianchi, G. M., Forte, C., & Cazzoli, G. (2014). A Numerical Methodology for the Multi-objective Optimization of the DI Diesel Engine Combustion. Energy Procedia, 45, 711-720. doi:10.1016/j.egypro.2014.01.076Navid, A., Khalilarya, S., & Taghavifar, H. (2016). Comparing multi-objective non-evolutionary NLPQL and evolutionary genetic algorithm optimization of a DI diesel engine: DoE estimation and creating surrogate model. Energy Conversion and Management, 126, 385-399. doi:10.1016/j.enconman.2016.08.014Benajes, J., GarcĂ­a, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014Masterton, B., Heffner, H., & Ravizza, R. (1969). The Evolution of Human Hearing. The Journal of the Acoustical Society of America, 45(4), 966-985. doi:10.1121/1.1911574Strahle, W. C. (1978). Combustion noise. Progress in Energy and Combustion Science, 4(3), 157-176. doi:10.1016/0360-1285(78)90002-3Flemming, F., Sadiki, A., & Janicka, J. (2007). Investigation of combustion noise using a LES/CAA hybrid approach. Proceedings of the Combustion Institute, 31(2), 3189-3196. doi:10.1016/j.proci.2006.07.060Klos, D., & Kokjohn, S. L. (2014). Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. International Journal of Engine Research, 16(3), 419-440. doi:10.1177/1468087414556135Cyclic dispersion in engine combustion—Introduction by the special issue editors. (2015). International Journal of Engine Research, 16(3), 255-259. doi:10.1177/1468087415572740Hickling, R., Feldmaier, D. A., & Sung, S. H. (1979). Knock‐induced cavity resonances in open chamber diesel engines. The Journal of the Acoustical Society of America, 65(6), 1474-1479. doi:10.1121/1.382910Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264Broatch, A., Margot, X., Gil, A., & Christian Donayre, (JosĂ©). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583Eriksson, L. J. (1980). Higher order mode effects in circular ducts and expansion chambers. The Journal of the Acoustical Society of America, 68(2), 545-550. doi:10.1121/1.384768Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081Tutak, W., & Jamrozik, A. (2016). Validation and optimization of the thermal cycle for a diesel engine by computational fluid dynamics modeling. Applied Mathematical Modelling, 40(13-14), 6293-6309. doi:10.1016/j.apm.2016.02.021Payri, F., Benajes, J., Margot, X., & Gil, A. (2004). CFD modeling of the in-cylinder flow in direct-injection Diesel engines. Computers & Fluids, 33(8), 995-1021. doi:10.1016/j.compfluid.2003.09.003Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044Lesieur, M., MĂ©tais, O., & Comte, P. (2005). Large-Eddy Simulations of Turbulence. doi:10.1017/cbo9780511755507Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035Silva, C. F., Leyko, M., Nicoud, F., & Moreau, S. (2013). Assessment of combustion noise in a premixed swirled combustor via Large-Eddy Simulation. Computers & Fluids, 78, 1-9. doi:10.1016/j.compfluid.2010.09.034Jamrozik, A., Tutak, W., Kociszewski, A., & Sosnowski, M. (2013). Numerical simulation of two-stage combustion in SI engine with prechamber. Applied Mathematical Modelling, 37(5), 2961-2982. doi:10.1016/j.apm.2012.07.040Qin, W., Xie, M., Jia, M., Wang, T., & Liu, D. (2014). Large eddy simulation of in-cylinder turbulent flows in a DISI gasoline engine. Applied Mathematical Modelling, 38(24), 5967-5985. doi:10.1016/j.apm.2014.05.004Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045Torregrosa, A. J., Broatch, A., MartĂ­n, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045Payri, F., Broatch, A., Margot, X., & Monelletta, L. (2008). Sound quality assessment of Diesel combustion noise using in-cylinder pressure components. Measurement Science and Technology, 20(1), 015107. doi:10.1088/0957-0233/20/1/015107Ihlenburg, F. (2003). The Medium-Frequency Range in Computational Acoustics: Practical and Numerical Aspects. Journal of Computational Acoustics, 11(02), 175-193. doi:10.1142/s0218396x03001900Lapuerta, M., Armas, O., & HernĂĄndez, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1Payri, F., Olmeda, P., MartĂ­n, J., & GarcĂ­a, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029Shahlari, A. J., Hocking, C., Kurtz, E., & Ghandhi, J. (2013). Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes. SAE International Journal of Engines, 6(1), 541-552. doi:10.4271/2013-01-1659Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-xReitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021Broatch, A., Javier Lopez, J., GarcĂ­a-TĂ­scar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287Molina, S., GarcĂ­a, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.03

    A new multistage lattice vector quantization with adaptive subband thresholding for image compression

    Get PDF
    Lattice vector quantization (LVQ) reduces coding complexity and computation due to its regular structure. A new multistage LVQ (MLVQ) using an adaptive subband thresholding technique is presented and applied to image compression. The technique concentrates on reducing the quantization error of the quantized vectors by "blowing out" the residual quantization errors with an LVQ scale factor. The significant coefficients of each subband are identified using an optimum adaptive thresholding scheme for each subband. A variable length coding procedure using Golomb codes is used to compress the codebook index which produces a very efficient and fast technique for entropy coding. Experimental results using the MLVQ are shown to be significantly better than JPEG 2000 and the recent VQ techniques for various test images

    Interaction of Imidazole Containing Hydroxamic Acids with Fe(III): Hydroxamate Versus Imidazole Coordination of the Ligands

    Get PDF
    Solution equilibrium studies on Fe(III) complexes formed with imidazole-4-carbohydroxamic acid (Im-4-Cha), N-Me-imidazole-4-carbohydroxamic acid (N-Me-Im-4-Cha), imidazole-4-acetohydroxamic acid (Im-4-Aha), and histidinehydroxamic acid (Hisha) have been performed by using pH-potentiometry, UV-visible spectrophotometry, EPR, ESI-MS, and H1-NMR methods. All of the obtained results demonstrate that the imidazole moiety is able to play an important role very often in the interaction with Fe(III), even if this metal ion prefers the hydroxamate chelates very much. If the imidazole moiety is in α-position to the hydroxamic one (Im-4-Cha and N-Me-Im-4-Cha) its coordination to the metal ion is indicated unambiguously by our results. Interestingly, parallel formation of (Nimidazole, Ohydroxamate), and (Ohydroxamate, Ohydroxamate) type chelates seems probable with N-Me-Im-4-Cha. The imidazole is in ÎČ-position to the hydroxamic moiety in Im-4-Aha and an intermolecular noncovalent (mainly H-bonding) interaction seems to organize the intermediate-protonated molecules in this system. Following the formation of mono- and bishydroxamato mononuclear complexes, only EPR silent species exists in the Fe(III)-Hisha system above pH 4, what suggests the rather significant “assembler activity” of the imidazole (perhaps together with the ammonium moiety)

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    5D operando tomographic diffraction imaging of a catalyst bed

    Get PDF
    We report the results from the first 5D tomographic diffraction imaging experiment of a complex Ni-Pd/CeO2-ZrO2/Al2O3 catalyst used for methane reforming. This five-dimensional (three spatial, one scattering and one dimension to denote time/imposed state) approach enabled us to track the chemical evolution of many particles across the catalyst bed and relate these changes to the gas environment that the particles experience. Rietveld analysis of some 2 × 106 diffraction patterns allowed us to extract heterogeneities in the catalyst from the Å to the nm and to the ÎŒm scale (3D maps corresponding to unit cell lattice parameters, crystallite sizes and phase distribution maps respectively) under different chemical environments. We are able to capture the evolution of the Ni-containing species and gain a more complete insight into the multiple roles of the CeO2-ZrO2 promoters and the reasons behind the partial deactivation of the catalyst during partial oxidation of methane

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • 

    corecore